Heat Transfer in Friction Stir Welding—Experimental and Numerical Studies
نویسندگان
چکیده
In the friction stir welding (FSW) process, heat is generated by friction between the tool and the workpiece. This heat flows into the workpiece as well as the tool. The amount of heat conducted into the workpiece determines the quality of the weld, residual stress and distortion of the workpiece. The amount of the heat that flows to the tool dictates the life of the tool and the capability of the tool for the joining process. In this paper, we formulate the heat transfer of the FSW process into two boundary value problems (BVP)—a steady state BVP for the tool and a transient BVP for the workpiece. To quantify the physical values of the process the temperatures in the workpiece and the tool are measured during FSW. Using the measured transient temperature fields finite element numerical analyses were performed to determine the heat flux generated from the friction to the workpiece and the tool. Detailed temperature distributions in the workpiece and the tool are presented. Discussions relative to the FSW process are then given. In particular, the results show that (1) the majority of the heat generated from the friction, i.e., about 95%, is transferred into the workpiece and only 5% flows into the tool and (2) the fraction of the rate of plastic work dissipated as heat is about 80%. @DOI: 10.1115/1.1537741#
منابع مشابه
FINITE ELEMENT SIMULATION OF HEAT TRANSFER IN FRICTION STIR WELDING OF AL 7050
Friction welding is widely used in various industries. In friction welding, heat is generated by conversion of mechanical energy into thermal energy at the interface the work pieces during pin rotation under pressure. A three-dimensional thermo mechanical simulation of friction stir welding (FSW) processes is carried out for Aluminium Alloys of 6061and 7050 where the simulation results are comp...
متن کاملNumerical and experimental study of the heat transfer process in friction stir welding
A mathematical model to describe the detailed three-dimensional transient heat transfer process in friction stir welding (FSW) is presented. This work is both theoretical and experimental. An explicit central diVerential scheme is used in solving the control equations, the heat transfer phenomena during the tool penetrating, the welding and the tool-removing periods that are studied dynamically...
متن کاملA Coupled Rigid-viscoplastic Numerical Modeling for Evaluating Effects of Shoulder Geometry on Friction Stir-welded Aluminum Alloys
Shoulder geometry of tool plays an important role in friction-stir welding because it controls thermal interactions and heat generation. This work is proposed and developed a coupled rigid-viscoplastic numerical modeling based on computational fluid dynamics and finite element calculations aiming to understand these interactions. Model solves mass conservation, momentum, and energy equations in...
متن کاملBehavior Simulation Polyamide 6 (PA6) During Friction Stir Welding and Comparison with Experimental Results
In this study, the effects of linear speed and rotational speed of the friction stir welding tool was investigated on the heat generation and distribution of heat,the material flow and weld defect formation of the Polyamide 6 (PA6) workpiece. The commercial CFD Fluent 6.4 software package was used to the simulation of the process with computational fluid dynamic technique. The output results of...
متن کاملBehavior Simulation Polyamide 6 (PA6) During Friction Stir Welding and Comparison with Experimental Results
In this study, the effects of linear speed and rotational speed of the friction stir welding tool was investigated on the heat generation and distribution of heat,the material flow and weld defect formation of the Polyamide 6 (PA6) workpiece. The commercial CFD Fluent 6.4 software package was used to the simulation of the process with computational fluid dynamic technique. The output results of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003